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ABSTRACT

Visualizing three-dimensional unstructured data from aerodynamics calculations is challenging

because the associated meshes are typically large in size and irregular in both shape and

resolution. The goal of this research is to develop a fast, efficient parallel volume rendering
algorithm for massively parallel distributed-memory supercomputers consisting of a large

number of very powerful processors. We use cell-projection instead of ray-casting to provide

maximum flexibility in the data distribution and rendering steps. Effective static load balancing is

achieved with a round robin distribution of data cells among the processors. A spatial partitioning

tree is used to guide the rendering, optimize the image compositing step, and reduce memory

consumption. Communication cost is reduced by buffering messages and by overlapping

communication with rendering calculations as much as possible. Tests on the IBM SP2

demonstrate that these strategies provide high rendering rates and good scalability. For a dataset

containing half a million tetrahedral cells, we achieve two frames per second for a 400x400-pixel

image using 128 processors.
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1 Introduction

Three-dimensional aerodynamics calculations often use unstructured meshes to model

objects with complex geometry. By applying finer meshes only to regions requiring high accu-

racy, both computing time and storage space can be reduced. This adaptive approach results in

computational meshes containing data cells which are highly irregular in both size and shape.

The lack of a simple indexing scheme for these complex grids makes visualization calculations

on such meshes very expensive. Furthermore, in a distributed computing environment, irregu-

larities in cell size and shape make balanced load distribution difficult as well.

The development of massively parallel rendering algorithms for irregular data has received

comparatively little attention. Notably, Williams [23] developed a cell-projection volume render-

ing algorithm for finite element data running on a single SGI multiprocessor workstation.

Uselton [21] designed a volume ray-tracing algorithm for curvilinear grids on a similar platform.

In both cases, tests were performed with up to eight processors and high parallel efficiency was

obtained. Challinger [2] developed a parallel volume ray-tracing algorithm for nonrectilinear

grids and implemented it on the BBN TC2000, a multiprocessor architecture with up to 128

nodes. Note that all three of these renderers used shared-memory programming paradigms.

Giertsen and Petersen [8] designed a scanline volume rendering algorithm for distributed-

memory systems based on Giertsen's previous sweep-plane approach [7], and implemented it on

a network of workstations. In their approach the volume dataset is replicated on each worksta-

tion, and a master-slave scheme is used to dynamically balance the load. However, tests were

performed with a maximum of four workstations, so the scalability of the algorithm and its

implementation for massively parallel processing has yet to be demonstrated.

In recent work, Silva, Michel], and Kaufman [18] presented a more elaborate approach for

rendering general irregular grids. Evolving from Giertsen's sweep-plane algorithm, their new

strategy is careful to exploit spatial coherence. The algorithm is potentially parallelizable but

tests were only performed on a Sun UltraSPARC-1. In addition, Wilhelms et al. [22] developed a

hierarchical and parallelizable volume rendering technique for irregular and multiple grids. This

algorithm favors coarse-grain parallelism for a shared-memory MIMD architecture.

Palmer and Taylor [16] devised a true distributed-memory ray-casting volume renderer for

unstructured grids and demonstrated it on Intel's 512-node Touchstone Delta system. Their algo-

rithm incorporated an adaptive screen-space partitioning scheme designed to reduce data move-

ment caused by changes in the viewpoint. Another distributed-memory unstructured-grid



rendererwas developed by Ma [12] for the Intel Paragon. This algorithm uses a graph-based par-

titioner to keep nearby cells together on the same processor, providing good locality during the

ray-cast resampling process. The algorithm is somewhat tedious to use for postprocessing visu-

alization applications because it requires both a preprocessing step to derive cell-connectivity

information and a pre-partitioning step whenever the number of processors changes.

Our current research is inspired by the trend toward larger numbers of processors in large-

scale scientific computing platforms, as typified by the terascale architectures being installed for

the U.S. Department of Energy's ASCI program. To support applications which use these sys-

tems, we must develop visualization tools which are appropriate to the architectures. We focus

on scalability and flexibility as two key design criteria. To address these issues, we propose a

static load balancing scheme coupled with an asynchronous communication strategy which

overlaps the rendering calculations with transfer of ray segments. Our results indicate that this

approach compares favorably with previous unstructured-grid volume rendering algorithms for

similar architectures.

Another problem shared by many existing visualization algorithms for unstructured data is

the need for a significant amount of preprocessing. One step extracts additional information

about the mesh, such as connectivity, in order to speed up later visualization calculations.

Another step may be needed to partition the data based on the particular parallel computing

configuration being used (number of processors, communication parameters, etc.). To reduce the

user "hassle factor" as much as possible and avoid increasing the data size or replicating data,

we want to eliminate these preprocessing steps. While this provides flexibility and convenience,

it also means less information is available for optimizing the rendering computations. We have

elected to sacrifice a small amount of performance in favor of enhanced usability.

In the remainder of the paper, we describe the strategies we have developed to achieve both

scalability and flexibility for volume rendering of unstructured data. We also present detailed

experimental performance results obtained with up to 128 nodes on an IBM SP2. We conclude

with a discussion of plans for future work, including opportunities for improving the algorithms

presented here.

2 Overview of the Algorithm

Our new parallel rendering algorithm performs a sequence of tasks as shown in Figure 1.

The volume data is distributed in round robin fashion with the intention of dispersing nearby
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cellsaswidely as possible among processors. The image space is partitioned using a simple scan-

line interleaving scheme.

Parallel Preproeessing

communicate

processors

Ray segment merging
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....... ]Image delivery and display ]........ !
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with other
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Figure 1: The volume rendering pipeline. This

procedure is replicated on every processor.

A preprocessing step then per-

forms a parallel, synchronized parti-

tioning of the volume data to

produce a hierarchical representa-

tion of the data space. This spatial

tree is used in the rendering step to

optimize the compositing process

and to reduce runtime memory con-

sumption.

To offer maximum freedom in

data distribution, a cell-projection

rendering method is used. However,

data cells are not pre-sorted in depth

order. Instead, each processor scan

converts its local cells to produce

many ray segments, which are routed to their final destinations in image space for merging. A

double-buffering scheme is used in conjunction with asynchronous send and receive operations to

reduce overheads and overlap communication of ray segments with rendering computations.

Scan conversion of data cells and merging of ray segments proceed together in multiplexed fash-

ion. When scan conversion and ray-segment merging are finished, each processor sends its com-

pleted subimage to a host computer which assembles them for display. A detailed description of

each of the steps of the algorithm is given in the following sections.

3 Data Distribution

Ideally, data should be distributed in such a way that every processor requires the same

amount of storage space and incurs the same computational load. There are several factors

which affect this. For the sake of concreteness, we assume meshes composed of tetrahedral cells;

similar considerations apply to other types of unstructured grids. First, there is some cost for

scan converting each cell. Variations in the number of cells assigned to each processor will pro-

duce variations in workloads. Second, cells come in different sizes and shapes. The difference in



sizecanbeaslargeasseveral orders of magnitude due to the adaptive nature of the mesh. As a

result, the projected image area of a cell can vary dramatically, which produces similar variations

in scan conversion costs. Furthermore, the projected area of a cell also depends on the viewing

direction. Finally, voxel values are mapped to both color and opacity values. An opaque cell can

terminate a ray early, thereby saving further merging calculations, but introducing further vari-

ability in the workload.

Figure 2: Local load imbalances are

reduced by processing cells from

throughout the spatial domain.

If ray-cast rendering were used, we would want

to assign groups of connected cells to each proces-

sor so that the rendering process can be optimized

by exploiting cell-to-cell coherence. But connected

cells are often similar in size and opacity, so that

grouping them together exacerbates load imbal-

ances, making it very difficult to obtain satisfactory

partitionings. We have therefore chosen to take the

opposite approach, dispersing connected cells as

widely as possible among the processors. Thus each

processor is loaded with cells taken from the whole

spatial domain rather than from a small neighbor-

hood as shown in Figure 2. Satisfactory scattering of

the input data can generally be achieved with a sim-

ple round robin assignment policy. With sufficiently

many cells, the computational requirements for each processor tend to average out, producing

an approximate load balance.

This approach also satisfies our requirement for flexibility, since the data distribution can be

computed trivially for any number of processors, without the need for an expensive pre-process-

ing step.

By dispersing the grid cells among processors, we also facilitate a very important visualiza-

tion operation for unstructured data--zoom-in viewing. Because of the highly adaptive nature of

unstructured meshes, the most important simulation results are usually associated with a rela-

tively small portion of the overall spatial domain. The viewer normally takes a peek at the over-

all domain and then immediately focuses on localized regions of interests, such as areas with

high velocity or gradient values. This zooming operation introduces challenges for efficient visu-

alization in a distributed computing environment. First, locating all of the cells which reside
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within theviewing region can be an expensive operation. Our solution, described in the next sec-

tion, is to employ a spatial partitioning tree to speed up this cell searching. Second, if data cells

are distributed to processors as connected components, zooming in on a local region will result

in severe load imbalances, as a few processors are left with all of the rendering calculations while

others go idle (Figure 3).

Figure 3: Zoomed-in viewing results in
severe load imbalances when

connected cells are grouped together.

An alternative approach is to distribute clus-

ters of connected cells to each processor and

hope that some data can be shared and some ray

segments can be merged locally. This approach

has several drawbacks. First, an appropriate

heuristic must be found for determining the

optimal cluster size. Second, the data must be

preprocessed to compute cell connectivity infor-

marion. Finally, the data must be partitioned in

a way which preserves locality and maintains a

relatively balanced load across processors. The

cost and inconvenience of these additional steps

can make this approach unattractive.

Although the round-robin distribution dis-

courages data sharing, our rendering algorithm

only requires minimum data--the cell and node information. No connectivity data are needed.

Each cell takes 16 bytes to store four node indices and each node takes 16 bytes to store three

coordinates and a scalar value. As a result, in the worst case of no sharing of any node informa-

tion, 80n bytes of data must be transferred in order to distribute n cells to a processor. As an

example, distributing a dataset of 1 million cells across 128 processors requires an average of

640,000 bytes of data to be transferred to and stored at each processor.

In addition to the object space operations on mesh cells, we also need to evenly distribute the

pixel-oriented ray-merging computations. Local variations in cell sizes within the mesh lead

directly to variations in depth complexity in image space. Therefore we need an image partition-

ing strategy which disperses the ray-merging operations as well. In our current implementation,

we assign successive scanlines to processors in round-robin fashion, a technique often known as

scanline interleaving. This works reasonably well as long as the vertical resolution of the image is

several times larger than the number of processors. With more processors, we conjecture that a



finer-grainedpixel interleave may be advantageous. At each pixel location, we maintain a linked

list of ray segments, which are merged to form the final pixel value. The pixel merging process is

described in more detail in subsequent sections.

4 Space Partitioning Tree

As described in the previous section, our round-robin data distribution scheme helps to

achieve flexibility and produces an approximate static load balance. However, it totally destroys

the spatial coherence among neighboring mesh cells, making an unstructured dataset even more

irregular. We would like to restore some ordering so that the rendering step may be performed

more efficiently.

Our approach to this problem is to have all processors render the cells in the same neighbor-

hood at about the same time. Ray segments generated for a particular region will consequently

arrive at their image-space destinations within a relatively short window of time, allowing them

to be merged early. This early merging reduces the length of the ray-segment list maintained by

each processor, which benefits the rendering process in two ways: first, a shorter list reduces the

cost of inserting a ray segment in its proper position within the list; and second, the memory

needed to store unmerged ray segments is reduced.

image

Figure 4: A global spatial partitioning

assigns cells to subregions for rendering.

To provide the desired ordering, data

cells can be grouped into local regions using

a hierarchical spatial data structure such as

an octree [10] or k-d tree [1]. We prefer the

k-d tree since it supports adaptive partition-

ing along orthogonal coordinate planes and

allows straightforward determination of the

depth ordering of the resulting regions.

Figure 4 shows rendering of a region within

such a partitioning, where the different col-

ored cells are stored and scan converted by

different processors.

The tree should be constructed coopera-

tively so that the resulting spatial partition-

ing is exactly the same on every processor.



After thedata cells are initially distributed, all processors participate in a synchronized parallel

partitioning process. The algorithm works as follows:

Each processor examines its local collection of cells and establishes a cutting position

such that the two resulting sub-regions contain about the same number of cells. The

direction of the cut is the same on each processor and alternates at each level of the

partitioning.

The proposed local cutting positions are communicated to a designated host node

which averages them together to obtain a global cutting position. This information is

then broadcast to each processor, along with the host's choice of the next subregion to

be partitioned. A cell which intersects a cut boundary is assigned to the region con-

taining its centroid.

• The procedure repeats until the desired number of regions have been generated.

At the end of the partitioning process, each processor has an identical list of regions, with each

region representing approximately the same rendering load as the corresponding region on

every other processor. If all processors render their local regions in the same order, loose syn-

chronization will be achieved due to the similar workloads, allowing early ray-merging to take

place within the local neighborhoods. The k-d tree also allows for fast searching of cells within a

spatial region specified by a zoom-in view. Note that our current implementation does not guar-

antee a well-balanced tree, but the extra searching overhead is insignificant compared to the time

required for the rendering calculations. We also observe that the spatial regions can also serve as

workload units should we ever need to perform dynamic load balancing.

5 Rendering

Direct volume rendering algorithms can be classified into either ray-casting [6][11][12][20] or

projection methods[15][17]. Projection methods may be further categorized as cell-

projected [22], slice-projected [24], or vertex-projected [14]. We have chosen a cell-projection

method similar to [15] because it offers more flexibility in data distribution and is more accurate.
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Figure 5: Cell projection rendering.

During rendering, processors fol-

low the same path through the spa-

tial partitioning tree, processing all

of the cells at each leaf node of the

tree. Each cell is scan-converted

independently, and the resulting ray

segments are routed to the processor

which owns the corresponding

image scanline. As adjacent ray seg-

ments are received, they are merged

using the standard Porter-Duff over

operator. Figure 5 illustrates the pro-

cess.

Since the ray segments which contribute to a given pixel arrive in unpredictable order, each

ray segment must contain not only a sample value and pixel coordinates, but also starting and

ending depth values which are used for sorting and merging within the pixel's ray segment list.

For the types of applications currently envisioned, we expect from 10 6 to 10 8 ray segments to be

generated for each image; at 16 bytes per segment, aggregate communication requirements are

on the order of 10 7 to 109 bytes per frame. Clearly, efficient management of the communication is

essential to the viability of our approach. The next section presents our solution to this problem.

6 Task Management with Asynchronous Communication

Good scalability and parallel efficiency can only be achieved if the parallelization penalty

and communication cost are kept low. As described above, our design reduces computational

overheads due to parallelization by eliminating the need to pre-sort the cells and by lowering the

post-sorting cost and memory consumption.

To manage communication costs, we adopt an asynchronous communication strategy which

was originally developed for a parallel polygon renderer [5] and later improved for use in the

PGL rendering system [3][4]. In the current context, the key features of this approach include:

• asynchronous operation, which allows processors to proceed independently of each

other during the rendering computations;



• multiplexing of the object-space cell computations with the image-space ray merging

computations;

• overlapped computation and communication, which hides data transfer overheads

and spreads the communication load over time; and

• buffering of intermediate results to amortize communication overheads.

segments
other

polling for ",.
incoming
ray segment/

other

Figure 6: Task management with
asynchronous communication.

During the course of rendering, there are

two main tasks to be performed: scan con-

version and image compositing. High effi-

ciency is attained if we can keep all

processors busy doing either of these two

tasks. Logically, the scan conversion and

merging operations represent separate

threads of control, operating in different

computational spaces and using different

data structures. For the sake of efficiency

and portability, however, we have chosen to

interleave these two operations using a poll-

ing strategy. Figure 6 illustrates at a high

level the management of the two tasks and

the accompanying communication. Each processor starts by scan converting one or more data

cells. Periodically the processor checks to see if incoming ray segments are available; if so, it

switches to the merging task, sorting and merging incoming rays until no more input is pending.

Due to the large number of ray segments generated, the overhead for communicating each of

them individually would be prohibitive in most architectures. Instead, it is better to buffer them

locally and send many ray segments together in one operation. To supplement this, we employ

asynchronous send and receive operations, which allow us to overlap communication and com-

putation, reduce data copying overheads in message-passing systems, and decouple the sending

and receiving tasks. We have found that this strategy is most effective when two or more ray seg-

ment buffers are provided for each destination. While a send operation is pending for a full

buffer, the scan conversion process can be placing additional ray segments in its companion

buffer. In the event that both buffers for a particular destination fill up before the first send com-



pletes, we can switch to the ray merging task and process incoming segments while we wait for

the outbound congestion to clear (in fact, this is essential to prevent deadlock).

There are two parameters that the user may specify to control the frequency of task switching

and communication. The first parameter is the polling interval, i.e., the number of cells to be pro-

cessed before checking for incoming ray segments. If polling is too frequent, excessive overheads

will be introduced; if it isn't often enough, the asynchronous communication scheme will per-

form poorly as outbound buffers clog up due to pending send operations. The second parameter

is the buffer depth, which indicates how many ray segments should be accumulated before an

asynchronous send is posted. If the buffer size is too small, the overheads for initiating send and

receive operations will be excessive, resulting in lowered efficiency. On the other hand, buffers

that are too large can introduce delays for processors which have finished their scan conversion

work and are waiting for ray segments to merge. Large buffers are also less effective at spreading

the communication load across time, resulting in contention delays in bandwidth-limited sys-

tems.

The most effective choice of buffer size depends on the number of processors in use, the

number of ray segments to be communicated, and the characteristics of the target architecture.

As one may suspect, the polling frequency should be selected in accordance with the buffer size.

As a general rule, polling should be performed more frequently with smaller buffer sizes or

larger numbers of processors. We present empirical results illustrating this relationship in the

next section.

The asynchronous nature of the communication algorithm makes it impossible for a proces-

sor to determine by itself whether rendering is complete. Care must be taken to avoid deadlock

or loss of ray segments. We suggest a procedure similar to that described in [5], in which a desig-

nated node coordinates the termination process by collecting local termination messages and

broadcasting a global termination signal. A final global synchronization operation ends the over-

all rendering process.

7 Test Results

For convenience, we have used a small unstructured grid dataset containing about 0.5 mil-

lion tetrahedral cells for our initial experiments. The dataset represents flow over an aircraft

wing with an attached missile. All test results are based on the average time of rendering this

dataset into a 400x400 pixel image for six different viewing directions. The surface mesh of the
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wing dataset is displayed in Figure 7, illustrating the large variations in cell size and density

which often arise in unstructured grids. Figure 8 shows a volume-rendered view of the overall

data domain, in which the area of the wing is relatively small. Figure 9 shows a zoomed-in view

of the flow surrounding the wing. Feature lines [13] have been added to assist in relating the

shocks to the structure of the wing. We plan to conduct further tests using a larger dataset with

several million cells.

Figure 7: Surface mesh structure of the aircraft wing
dataset.

Figure 10 plots rendering time in seconds vs. the number

We implemented our vol-

ume renderer in the C language

using MPI message passing [19]

for interprocessor communica-

tion. All tests were run on IBM

SP2 systems located at NASA's

Ames and Langley Research

Centers. The SP2 [9] is a distrib-

uted-memory architecture

which employs a switch-based

processor interconnect. The

NASA SP2s are populated with

"wide" nodes based on a 66.7

MHz POWER2 chip set and

incorporate a second-generation

switch with a peak node-to-node

bandwidth of about 34 MB/s.

of processors. With 128 nodes we

can render our test dataset at two frames per second (excluding display time). The annotations to

the right of the data points indicate the buffer depth (in number of ray segments) and polling fre-

quency (high, medium, or low). Our experiments indicate that with large numbers of processors

(32 and above), two different strategies for setting the buffer depth and polling frequency pro-

vide equivalent performance. The reasons for this are not completely clear; however our previ-

ous experience with parallel polygon renderers indicates that the polling frequency is not a

critical parameter. Furthermore, the communication algorithm has a built-in feedback mecha-

nism: if sending becomes blocked due to full buffers, the processor switches to the ray merging

task and begins receiving, regardless of the value of the polling interval.
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Figure 8: Volume rendering of the flowfield around an aircraft wing.

Figure 9: Close-up view of the wing region. Feature lines assist in

relating the volume data to the underlying structure.
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Figure 10: Rendering time.

A better picture of the parallel per-

formance is obtained from Figure 11

which shows the speedups and parallel

efficiencies obtained as the number of

processors varies from 1 to 128. With 128

processors, we achieve a speedup of 90,

for a parallel efficiency of 70%. Some of

this degradation is due to load imbal-

ance, as shown in Figure 12. However,

the static load balancing scheme

employed here compares favorably

with our earlier algorithm [12] for the

Intel Paragon, particularly for smaller

numbers of processors. To obtain a better

understanding of the remaining load

imbalance and other parallel overheads,

we need to examine the performance characteristics of the renderer in more detail.

Figures 13 and 14 show the per-processor contributions of various execution time compo-

nents. These are measured by inserting calls to a high-resolution, low-overhead assembly lan-

guage event timer at strategic locations in the code. The overhead for the timer calls is deducted

to yield accurate estimates of the actual runtime due to each component. Each of the eleven com-

ponents is described in Table 1.

As the graphs show, the object-space computations (viewing transformations and scan con-

version) are well-balanced, with only minor variations in execution time. However the image-

space operations (ray merging) show a distinct pattern, with the higher- and lower-numbered

processors having somewhat more work to do. We believe that this is caused by "hot spots" in

the volume data, i.e., small regions with high cell densities that map to only a few scanlines in

the final image. If we translate the viewpoint up or down slightly, the peaks and valleys of the

t_merge component shift cydically, confirming our hypothesis. This suggests that a finer-grained

image distribution (e.g., pixel interleaving) could provide better static load balancing with large

numbers of processors.

The graphs also show the effect of the polling frequency and buffer size parameters.

Figure 13 shows execution times with a buffer depth of 25 and polling after each cell is scan con-
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Figure 11: Speedup and parallel efficiency.
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Figure 13: Execution time components for 64 processors; buffer depth = 25, polling
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Figure 14: Execution time components for 64 processors; buffer depth = 200, polling

after every 4th cell.
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t_init

t_scvt

t_merge

t_misc

t_copy

t_poll

t_send

t_recv

send_wait

recv_wait

sync_wait

Time to perform viewing transformations on the cell

data, and other beginning-of-frame initializations.

Time to scan convert local cells.

Time to sort and merge ray segments.

Other computation: tree traversal, control flow, etc.

Overhead for placing ray segments in output buffers.

Time required to check for incoming messages.

_me for sending ray buffers.

Time for receiving ray buffers.

Idle time when outgoing send buffers are blocked and no

incoming ray segments are available for merging.

Idle time waiting for ray segments to arrive after all local

ceils have been processed.

Time for termination detection and end-of-frame syn-
chronization.

Table 1: Execution time components.

verted; the conditions for Figure 14 are identical except that the segment buffers are eight times

larger and polling is performed after every four cells. We see that larger buffers and longer poll-

ing intervals significantly reduce the sending, receiving, and polling components. However,

larger buffers also lead to increases in idle time (send_wait, recv_wait and sync_wait), presumably

because idle processors have to wait longer for new work to arrive. The net result is that larger

buffers and longer polling intervals provide only slight improvements in the total rendering

time. We suspect that some of this idle time can be eliminated by tuning our current termination

algorithm.

Finally, we note that the send_wait time is negligible in both cases. This is not always true. We

have seen instances in which the spatial partitioner generates regions which have very small pro-

jected areas in image space. The result is that all of the message traffic generated for that region

bombards a few nodes, creating congestion which causes the output buffers to back up. Since the

traffic is focused in a very limited portion of the image, most nodes have no incoming ray seg-

ments to process, and thus fall idle. There are several strategies which are useful in combating

this problem. First, pixel interleaving could be expected to distribute the load across more pro-
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cessors,unlesstheregionsbecome tiny (a distinct possibility with highly adaptive grids). Sec-

ond, the parameters on the partitioner can be adjusted so that regions are not allowed to fall

below a certain size. Alternatively, the partitioner could be configured to produce regions with

high aspect ratios, resulting in larger footprints in image space. Unfortunately, this last approach

would partially defeat the purpose of using a partitioner in the first place, i.e., to facilitate early

ray merging.

To gauge the effectiveness of our partitioning strategy, we have collected statistics on the

maximum number of unmerged ray segments which must be stored on any processor during the

rendering process. Our experiments indicate that with 64 regions, the number of unmerged seg-

ments on any given processor is at most 15-20% of the total number received.

8 Conclusions

By combining a spatial partitioning scheme with techniques which were originally devel-

oped for parallel polygon rendering, we have produced a volume renderer for unstructured

meshes which employs inexpensive static load balancing to achieve high performance and rea-

sonable efficiency with modest memory consumption. We believe that our algorithm is currently

the most effective one available for rendering complex unstructured grids on distributed-mem-

ory message-passing architectures. Detailed performance experiments with up to 128 processors

lead us to believe that further improvements are possible.

We plan to conduct additional tests with larger datasets, different image sizes, more proces-

sors, and other architectures. With larger datasets, the number of ray segments generated may

increase significantly, and we need to assess the impact of this additional communication load on

overall performance. We also want to investigate the potential for finer-grained image partition-

ings and improved termination strategies to improve the parallel efficiency of our approach.

The ultimate goal is a fast, scalable volume renderer which can handle tens of millions of grid

cells using hundreds or thousands of high-performance processors.
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